
ARRAYS
INTRODUCTION

Data structures are classified as either linear or nonlinear.

A data structure is said to be linear if its elements form a sequence, or, in other words, a linear
list.

There are two basic ways of representing such linear structures in memory.

1. By having a linear relationship between the elements represented by means of
sequential memory locations. These linear structures are called arrays.

2. The other way is to have the linear relationship between the elements represented by
means of pointers or links. These linear structures are called linked lists.

Nonlinear structures are trees and graphs.

The operations one normally performs on any linear structure whether it is an array or a linked
list, are:

(a) Traversal - Processing each element in the list.

(b) Search- Finding the location of the element with a given value or the record with a given key.

(c) Insertion -Adding a new element to the list.

(d) Deletion - Removing an element from the list.

(e) Sorting - Arranging the elements in some type of order.

(f) Merging - Combining two lists into a single list

The particular linear structure that one chooses for a given situation depends on the relative
frequency with which one performs these different operations on the structure .

LINEAR ARRAYS

A linear array is a list of a finite number n of homogeneous data elements (i.e., data elements
the same type) such that:

(a) The elements of the array are referenced respectively by an index set consisting of n
consecutive numbers.

(b) The elements of the array are stored respectively in successive memory locations.



The number n of elements is called the length or size of the array.

If not explicitly stated, we will assume the index set consists of the integers 1, 2, ..., n.

In general, the length or the number of data elements of the array can be obtained from the
index set by the formula

Length = UB - LB + 1

where UB is the largest index, called the upper bound,
and LB is the smallest index, called the lower bound, of the array.

Note that length = UB when LB = 1.

The elements of an array A may be denoted by the subscript notation

A1 , A2, A3,….. An or by the bracket notation (used in C)

The number K in A[K] is called a subscript or an index and A[K] is called a subscripted

variable. Subscripts allow any element of A to be referenced by its relative position in A.



When we define the array, the size should be known.

Subscripts are used to refer the elements of the array where 0 is considered to be the lowest

subscript always and the highest subscript is (size -1). which is 9 in this case. We can refer to

any element as a[0], a[1 ], a[2] etc.

REPRESENTATION OF LINEAR ARRAYS IN MEMORY

Let LA be a linear array in the memory of the computer. The memory of the computer is  a

sequence of addressed locations as in Fig.

The notation LOC(LA[K]) = address of the element LA[K] of the array LA.



Elements of LA are stored in successive memory cells. The computer does not need to keep

track of the address of every element of LA, but needs to keep track only of the address of the

first element of LA, denoted by Base(LA) and called the base address of LA.

Using this address Base(LA), the computer calculates address of any element of LA by the

following formula:

LOC (LA[K]) = Base(LA) + w(K - lower bound)          where w is the number of words per

memory cell for the array LA.

Given any subscript  K, one can locate and access the content of LA[K] without scanning any

other element of LA.





TRAVERSING LINEAR ARRAYS

Let A be a collection of data elements stored in the memory of the computer. Suppose we want

to print the contents of each element of A or to count the number of elements of A with a given

property. This can be accomplished by traversing A, that is, by accessing and processing (called

visiting) each element of A exactly once.



INSERTING AND DELETING

Let A be a collection of data elements in the memory of the computer. "Inserting" refers to the

operation of adding another element to the collection A, and "deleting" refers to the operation of

removing one of the elements from A.

Inserting an element at the "end" of a linear array can be easily done if the memory space

allocated for the array is large enough to accommodate the additional element. But, suppose we

need to insert an element in the middle of the array. Then, on the average, half of the elements

must be moved downward to new locations to accommodate the new element and keep the

order of the other elements.

Similarly, deleting an element at the "end" of an array presents no difficulties, but deleting an

element somewhere in the middle of the array requires that each subsequent element moved

one location upward in order to "fill up" the array.

"downward" refers to locations with larger subscripts, and the term "upward" refers to locations

with smaller subscripts.

(Inserting into a Linear Array) INSERT (LA, N, K, ITEM)

Here LA is a linear array with N elements and K is a positive integer such
that K <= N. This algorithm inserts an element ITEM into the Kth position in
LA.

1. [Initialize counter.] Set J: = N.
2. Repeat Steps 3 and 4 while J >= K.
3. [Move Jth element downward.]  Set LA[J + 1]:= LA[J]
4. [Decrease counter.] Set J := J - 1.



[End of Step 2 loop.]
5. [Insert element.] Set LA[K] := ITEM.
6. [Reset N.] Set N := N + 1.
7. Exit.

The following algorithm deletes the Kth element from a linear array LA and assigns it variable
ITEM.

Program for Insertion and deletion in an array

SORTING; BUBBLE SORT

Sorting means arranging numerical data in decreasing order or arranging non-numerical data in
alphabetical order. That is some order.



Eg: 32, 51, 27, 85, 66, 23, 13, 57



Program for Bubble sort

SEARCHING; LINEAR SEARCH

Let DATA be a collection of data elements in memory, and suppose a specific ITEM of
information is given.

Searching refers to the operation of finding the location LOC of ITEM in DATA, or printing some
message that ITEM does not appear there. The search is said to be successful if ITEM does
appear in DATA and unsuccessful otherwise.

Suppose DATA is a linear array with n elements. To search for a given ITEM in DATA is to
compare ITEM with each element of DATA one by one. That is, first we test whether DATA[1] =



ITEM, and then we test whether DATA[2] = ITEM, and so on. This method, which traverses
DATA sequentially to locate ITEM, is called linear search or sequential search.

To simplify the matter, we first assign ITEM to DATA[N + 1], the position following the last
element of DATA. Then the outcome

LOC = N +1

Where LOC denotes the location where ITEM first occurs in DATA, signifies the search is
unsuccessful. The purpose of this initial assignment is to avoid repeatedly testing whether or not
we have reached the end of the array DATA. This way, the search must eventually "succeed”.

Program for Linear Search



BINARY SEARCH

Suppose DATA is an array which is sorted in increasing numerical order or alphabetically. There
is an extremely efficient searching algorithm, called binary search which can be used to find the
location LOC of a given ITEM of information in DATA.

Suppose we want to find the location of some name in a telephone directory (or some word m a
dictionary). Here we do not perform a linear search. We open the directory in the middle to
determine which half contains the name. Then opens that half in the middle to determine which
quarter of the directory contains the name. Then opens that quarter in the middle to determine



which eighth of the directory contains the name. And so on until we find the location of the
name, by reducing (very quickly) the number possible locations for it in the directory

During each stage of the algorithm, search for ITEM Is reduced to a segment of elements of
DATA:

DATA[BEG], DATA[BEG + 1], DATA[BEG +2], ……..., DATA[END]

BEG and END denotes, respectively, the beginning and end locations of the segment under
consideration.

The algorithm compares ITEM with the middle element DATA[MID] of the segment, where MID
is obtained by

MID = INT((BEG + END)/2)

If DATA[MID] = ITEM, then the search is successful and set LOC = MID. Otherwise a new
segment of DATA is obtained as follows:

(a) If ITEM < DATA[MID], then ITEM can appear only in the left half of the segment:
DATA[ BEG], DATA[BEG + 1],…..... DATA[MID - 1]

Reset END := MID - 1 and begin searching again

(b) If ITEM> DATA[MID], then ITEM can appear only in the right half of the segment:

DATA[MID + 1],DATA[MID +2],……... DATA[END]

Reset BEG := MID + l and begin searching again.

Initially, we begin with the entire array DATA; i.e., we begin with BEG = 1 and END = n, or with
BEG = LB and END = UB.

If ITEM is not in DATA, then we obtain END <BEG. This condition signals that the search is
unsuccessful, and in such a case we assign LOC = NULL



Program for Binary search



MULTIDIMENSIONAL ARRAYS

The linear arrays are also called one-dimensional arrays, since each element in the array is

referenced by a single subscript. Most programming languages allow two-dimensional and

three-dimensional arrays, i.e.. arrays where elements are referenced, respectively by two and

three subscripts.

Two-Dimensional Arrays



A two-dimensional m x n array A is a collection of m. n data elements such that each element is

specified by a pair of integers (such as J, K), called subscripts, with the property that

1<=J <=m and 1<=K<=n

The element of A with first subscript J and second subscript K will be denoted by A j,k or A[J, K]  .

Two-dimensional arrays are called matrices or tables.

A two-dimensional array is a list of one dimensional arrays. To declare a two-dimensional
integer array of size x.y, we use

type arrayName[x][y]

Where type can be any valid C data type and arrayName will be a valid identifier. A

two-dimensional array can be considered as a table with x number of rows and y number of

columns.

Similarly, one can declare a three-dimensional (3D) array.

For example float y[10][3][4];

Here, the array y can hold 120 elements. A 3D array is essentially an array of 2D arrays. You

can think of this as 10 matrices each with 3 rows and 4 columns. Hence, the total number of

elements is 120.

A two dimensional array A[3][4] though A is pictured as a rectangular array of elements with m

rows and n columns, is represented as a block of mxn sequential memory locations and is

basically a linear storage.



There are two possible arrangements of elements in memory row major arrangement and

column major arrangement. The difference between the orders lies in which elements of an

array are contiguous in memory. In a row-major order, the consecutive elements of a row reside

next to each other i.e. row wise, whereas the same holds true to consecutive elements of a

column in a column-major order, column wise.

Row Major

We can calculate the address of the element of the mth  row and the nth column in a

two-dimensional array using the formula:

addr(a[m, n]) = (total number of rows present before the mth row x size of a row) + (total

number of elements present before the nth element in the mth row x size of element)

In the above equation:

The total number of rows present before mth row = (m – lb1) and Ib1 is a first dimensional lower

bound.

Size of a row = total number of elements present in a row x size of an element.



Total number of elements in a row is calculated using (ub2-lb2 + 1 ) and ub2 and lb2 are the

second dimensional upper and lower bounds.

All the variables present the above equation can be written in a simple form as:

addr(a[m, n]) = ((m – lb1) x (ub2 - lb2 + 1 ) x size) + ((n - lb2) x size)

Column-major Representation

We can also represent a two-dimensional array as one single row of columns. Such a

representation is called a column-major representation

We can calculate the address of the element of the mth  row and the nth column in a

two-dimensional array using the formula:

addr(a[m, n]) = (total number of columns present before the nth column x size of a column)

+ (total number of elements present before the mth element in the nth column x size of element)

In the above equation:

The total number of columns present before nth column = (n – lb2) and Ib2 is a second

dimensional lower bound.

Size of a column = total number of elements present in a column x size of an element.

Total number of elements in a column is calculated using (ub1-lb1 + 1 ) and ub1 and lb1 are the

first dimensional upper and lower bounds.

All the variables present the above equation can be written in a simple form as:

addr(a[m, n]) = ((n – lb2) x (ub1 – lb1 + 1 ) x size) + ((m – lb1) x size)

SPARSE MATRICES
Matrices with a relatively high proportion of zero entries are called sparse matrices. Two general

types of n-square sparse matrices, which occur in various applications, are pictured in Fig . The

first matrix. where all entries above the main diagonal are zero or, equivalently, where nonzero

entries can only occur on or below the main diagonal, is called a (lower) triangular matrix. The

second matrix, where nonzero entries can only occur on the diagonal or on elements

immediately above or below the diagonal, is called a tridiagonal matrix.



The natural method of representing matrices in memory as 2D arrays may not be suitable for

sparse matrices. That is, we can save space by storing only those entries which may be

nonzero

void main()

{

int S[10][10],m,n,i,k=0,count=0;

printf("Enter number of rows in the matrix : ");

scanf("%d",&m);

printf("Enter number of columns in the matrix : ");

scanf("%d",&n);

printf("Enter elements in the matrix : ");

for ( i = 0; i < m; i++)

for ( j = 0; j < n; j++)

scanf("%d",&S[i][j]);

printf("The matrix is \n");

for ( i = 0; i < m; i++)

{

for ( j = 0; j < n; j++)

{



printf(" %d ",S[i][j]);

if (S[i][j] != 0)

count++;

}

printf("\n");

}

int M[3][size];

for ( i = 0; i < m; i++)

for ( j = 0; j < n; j++)

if (S[i][j] != 0)

{

M[0][k] = i;

M[1][k] = j;

M[2][k] = S[i][j];

k++;

}

printf("Triplet representation of the matrix is \n");

for (int i=0; i<3; i++)

{

for (int j=0; j<size; j++)

printf(" %d ", M[i][j]);

printf("\n");

}

return 0;

}



#include<stdio.h>

void main( )

{

int m,n,i,j,a[10][10],b[10]10],l,count;

clrscr();

printf(“Enter order of the matrix\n”);

scanf(“%d%d”,&m,&n);

printf("Enter elements in the matrix : ");

for ( i = 0; i < m; i++)

for ( j = 0; j < n; j++)

scanf("%d",&a[i][j]);

l=1;

count=0;

for ( i = 0; i < m; i++)

{

for ( j = 0; j < n; j++)

{

if(a[i][j]!=0)

{

b[l][0]=i;

b[l][1]=j;

b[l][2]=a[i][j];

l++;

count++;

}

}

}

b[0][0]=m;

b[0][1]=n;

b[0][2]=count;



printf(“Sparse matrix in triplet representation\n”);

for ( i = 0; i < m; i++)

{

for ( j = 0; j < n; j++)

{

printf("%d\t",b[i][j]);

}

printf("\n");

}

}

REPRESENTATION OF POLYNOMIALS USING ARRAYS
Sometimes we will need to evaluate several polynomial expressions and perform basic

arithmetic operations like addition, multiplication, etc. on them. The easiest way to represent a

polynomial of degree 'n’ is by storing the coefficient of (n+1) terms of a polynomial in an array.

An expression x+4x2-7x5 is a polynomial of degree 5.

All the elements of an array have two values, coefficient and exponent. Assume that exponent

of each successive term is less than that of the previous term. Once we build an array for

polynomials, we can use it to perform various operations including addition and multiplication. A

single-dimensional array is used for representing a single variable polynomial. The index of

such an array can be considered as an exponent and the coefficient can be stored at that

particular index.



Drawbacks.
Suppose the exponents is too large, then the size of the array will become more. For instance, if

we have something like 4x999, in that case, we will have to store the coefficient 4 at index 999 in

the array, and the array size will have to be 1000. Scanning such a large array-it will be time
consuming.

Wastage of space. Suppose you have a polynomial 6x99-5,then only two elements will be

stored in the array of size 100. The remaining space will be empty and therefore not utilized.

A third problem - cannot decide the size of the array. Suppose we have array of size 15, and

the exponent value of the polynomial is 50, then we cannot store exponent value and we will

have to change the array size.

Addition of 2 polynomials:
Let there be 2 polynomials A and B. The polynomial storing the addition result is stored in one

large array C and i, j, and k represents the pointers to the polynomials and arrays respectively.

1. Set i to point to first term in A.

2. Set j to point to first term in B.

3. Set k to point first position in C.

4. Read n1= no. of terms in A, n2 = no. of terms in B

5. While i < n1 and j < n2, then

(a) If exponent at ith position of A = exponent at jth position of B, then C at kth position =

coeff of A at ith position + coeff of B at jth position.



Increment i, j, k to point to next position in A, B, C

(b) Else

If exponent at ith position of A < exponent at jth position of B, then

Copy coeff at ith position from A to coeff kth position in C.

Increment i and k

Else

Copy coeff at jth position from B into coeff kth at position k in C.

Increment j and k  to point to next position in  B, C

6. While i<n1

(a) Copy coeff at ith position of the coeff field into coeff at k position in C

(b) Copy exponent pointed by i into exponent field at kth position in C

(c) i and k are incremented to point to the next position in arrays A and C

7. While j< n2

(a) Copy coeff at jth position of B into coeff at kth position in C

(b) Copy exponent pointed by j into exponent field at k position in C

(c) j, k are incremented to point to next position in B and C arrays

8.    Display C [complete array as the addition of two polynomials A and B]

Exit

Program for Addition of 2 polynomials





#include<stdio.h>
#include<conio.h>
void main()
{



int a[10],b[10],c[10],i,m,n,cnt=0;
clrscr();
for(i=0;i<=9;i++)
a[i]=0;

for(i=0;i<=9;i++)
b[i]=0;
printf(“\nEnter the order of first Polynomial”);
scanf(“%d”,&m);
printf(“\nEnter the Coefficient”);
for(i=m;i>=0;i–)
{
scanf(“%d”,&a[i]);
}
printf(“\nEnter the order of Second Polynomial”);
scanf(“%d”,&n);
printf(“\nEnter the Coefficient”);
for(i=n;i>=0;i–)
{
scanf(“%d”,&b[i]);
}
if(m>=n)
{
for(i=m;i>=0;i–)
{
c[i]=a[i]+b[i];
cnt++;
}
}
else
{
for(i=n;i>=0;i–)
{
c[i]=a[i]+b[i];
}
}
printf(“\n\nRESULTANT POLYNOMIAL IS :A:=”);
for(i=cnt-1;i>0;i–)
{

if(c[i]!=0)

printf(“%dX^%d+”,c[i],i);
}
printf(“%d”,c[i]);
getch();
}



Parallel Arrays

Notes to be prepared by students


