MODULE 2

Graphics Primitives

Points and Lines

- Point plotting is done by converting a single coordinate position furnished by an application program into appropriate operations for the output device in use.
- Line drawing is done by calculating intermediate positions along the line path between two specified endpoint positions.
- The output device is then directed to fill in those positions between the end points with some color.
- For some device such as a pen plotter or random scan display, a straight line can be drawn smoothly from one end point to other.
- Digital devices display a straight line segment by plotting discrete points between the two endpoints.
- Discrete coordinate positions along the line path are calculated from the equation of the line.
- For a raster video display, the line intensity is loaded in frame buffer at the corresponding pixel positions.
- Reading from the frame buffer, the video controller then plots the screen pixels.
- Screen locations are referenced with integer values, so plotted positions may only approximate actual line positions between two specified endpoints.
- For example line position of $(12.36,23.87)$ would be converted to pixel position $(12,24)$.
- This rounding of coordinate values to integers causes lines to be displayed with a stair step appearance ("the jaggies"), as represented in fig 2.1.

Fig. 2.1: - Stair step effect produced when line is generated as a series of pixel positions.

- The stair step shape is noticeable in low resolution system, and we can improve their appearance somewhat by displaying them on high resolution system.
- More effective techniques for smoothing raster lines are based on adjusting pixel intensities along the line paths.
- For raster graphics device-level algorithms discuss here, object positions are specified directly in integer device coordinates.
- Pixel position will referenced according to scan-line number and column number which is illustrated by following figure.

Graphics Primitives

- Line Drawing algorithms
- DDA
- Bresenham's Line drawing Algorithm
- Circle Generating Algorithm
- Midpoint circle generating Algorithm
- Bresenham's circle generating Algorithm
- Polygon fill algorithm
- Scan Line Polygon fill algorithm

DDA Algorithm

- Digital Differential Analyzer Algorithm
- Scan conversion line drawing algorithm based on calculating either Δx or Δ^{y}.
- Basic incremental algorithm.
- We have a line with end points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$.
- In order to draw a line $\left(x_{1}, y_{1}\right)$ to $\left(x_{2}, y_{2}\right)$, we have to find all the intermediate points between $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$.
- Equation for straight line is $y=m x+b$, where " m " is the slope.
- Slope is calculated as
$m=\left(y_{2}-y_{1}\right) /\left(x_{2}-x_{1}\right)$ or
$m=(y k+1-y k) /(x k+1-x k)$

DDA Algorithm cntd..

- In DDA algorithm, we find all the intermediate points from starting point to end point.
- First, we plot initial (x, y) points \& whenever we find the last point (x, y) we will end the algorithm.
- Depending upon the slope m, we have 3 cases.

Case 1 ($m<1$)

-x coordinate changes in unit interval.
$x_{k+1}=x_{k+1}$
$x_{k+1}-\chi_{k=1}$
$m=\left(y_{2}-y_{1}\right) /\left(x_{2}-x_{1}\right)$
$y k+1=y k+m$

Case $2(m>1)$
-y coordinate changes in unit interval.

$$
\begin{aligned}
& y k+1=y k+1 \\
& y k+1-y k=1 \\
& m=\left(y_{2}-y_{1}\right) /\left(x_{2}-x_{1}\right) \\
& x_{k+1}=x_{k}+1 / m \\
& \text { Computer Graphics by A }
\end{aligned}
$$

Case 3 (m=1)

-x and y coordinates changes in unit interval.

$$
\begin{gathered}
x_{k+1}=x_{k+1} \\
y k+1=y k+1
\end{gathered}
$$

DDA Algorithm cntd..

- Algorithm

1. Calculate slope m
2. If $m<1$

- $\quad X$ changes in unit interval
- Y moves with deviation
- \quad New points $(x k+1, y k+1)=\left({ }^{x} k+1, y k+m\right)$

3. If $m>1$

- $\quad x$ moves with deviation
- $\quad y$ changes in unit interval
- \quad New points $(x k+1, y k+1)=\left(x_{k}+1 / m, y k+1\right)$

4. If $m=1$

- $\quad x$ and y moves in unit interval.
- \quad New points $(x k+1, y k+1)=\left(x_{k}+1, y k+1\right)$

5. Continue until we reach end points

DDA Algorithm cntd..

Q. The end points of a line is given : 0,0$) \&(4,5)$. Find all the intermediate points.

DDA Algorithm cntd..

Q. The end points of a line is given : $(0,0) \&(4,5)$. Find all the intermediate points.

$$
\begin{aligned}
& m=(y k+1-y k) /(x k+1-x k) \\
& m=(5-0) /(4-0)=5 / 4>1
\end{aligned}
$$

Hence $\mathrm{m}>1$.

Then,

$$
\begin{aligned}
& y k+1=y k+1 \\
& y k+1-y k=1 \\
& x_{k}+1=x_{k}+1 / m \\
& 1 / m=4 / 5=0.8
\end{aligned}
$$

DDA Algorithm cntd..

Q. The end points of a line is given : $(0,0) \&(4,5)$. Find all the intermediate points.

x	y	x plotted on graph	y plotted on graph	(x,y)

DDA Algorithm cntd..

Q. The end points of a line is given : $(0,0) \&(4,5)$. Find all the intermediate points.

\mathbf{x}	\mathbf{y}	\mathbf{x} plotted on graph	y plotted on graph	(x, y)
0	0	0	0	$(0,0)$
0.8	1	1	1	$(1,1)$
1.6	2	2	2	$(2,2)$
2.4	3	2	3	$(2,3)$
3.2	4	3	4	$(3,4)$
4	5	4	5	$(4,5)$

DDA Algorithm cntd..

Q2. The end points of a line is given : $(2,3) \&(12,8)$. Find all the intermediate points.

