MODULE 2

Graphics Primitives

Points and Lines

- Point plotting is done by converting a single coordinate position furnished by an application program into appropriate operations for the output device in use.
- Line drawing is done by calculating intermediate positions along the line path between two specified endpoint positions.
- The output device is then directed to fill in those positions between the end points with some color.
- For some device such as a pen plotter or random scan display, a straight line can be drawn smoothly from one end point to other.
- Digital devices display a straight line segment by plotting discrete points between the two endpoints.
- Discrete coordinate positions along the line path are calculated from the equation of the line.
- For a raster video display, the line intensity is loaded in frame buffer at the corresponding pixel positions.
- Reading from the frame buffer, the video controller then plots the screen pixels.

- Screen locations are referenced with integer values, so plotted positions may only approximate actual line positions between two specified endpoints.
- For example line position of (12.36, 23.87) would be converted to pixel position (12, 24).
- This rounding of coordinate values to integers causes lines to be displayed with a stair step appearance ("the jaggies"), as represented in fig 2.1.

Fig. 2.1: - Stair step effect produced when line is generated as a series of pixel positions.

- The stair step shape is noticeable in low resolution system, and we can improve their appearance somewhat by displaying them on high resolution system.
- More effective techniques for smoothing raster lines are based on adjusting pixel intensities along the line paths.

- For raster graphics device-level algorithms discuss here, object positions are specified directly in integer device coordinates.
- Pixel position will referenced according to scan-line number and column number which is illustrated by following figure.

Graphics Primitives

- Line Drawing algorithms
 - DDA
 - Bresenham's Line drawing Algorithm
- Circle Generating Algorithm
 - Midpoint circle generating Algorithm
 - Bresenham's circle generating Algorithm
- Polygon fill algorithm
 - Scan Line Polygon fill algorithm

DDA Algorithm

- Digital Differential Analyzer Algorithm
- Scan conversion line drawing algorithm based on calculating either Δx or Δy .
- Basic incremental algorithm.
- We have a line with end points (x_1, y_1) and (x_2, y_2) .
- In order to draw a line (x_1, y_1) to (x_2, y_2) , we have to find all the intermediate points between (x_1, y_1) and (x_2, y_2) .
- Equation for straight line is
 y = mx + b , where "m" is the slope.
- Slope is calculated as m = (y₂-y₁)/(x₂- x₁) or m = (yk+1 - yk)/(xk+1 - xk)

- In DDA algorithm, we find all the intermediate points from starting point to end point.
- First, we plot initial(x, y) points & whenever we find the last point (x, y) we will end the algorithm.
- Depending upon the slope m, we have 3 cases.

Case 1 (m<1)Case 2 (m>1)Case 3 (m=1)•x coordinate changes in
unit interval.•y coordinate changes in
unit interval.•x and y coordinates changes
in unit interval.
$$\chi_{k+1} = \chi_{k+1}$$

 $\chi_{k+1} - \chi_{k=1}$ •y coordinate changes in
unit interval.•x and y coordinates changes
in unit interval. $\chi_{k+1} = \chi_{k+1}$
 $\chi_{k+1} - \chi_{k=1}$ $\psi_{k+1} = \psi_{k+1}$
 $\psi_{k+1} - \psi_{k} = 1$ •x and y coordinates changes
in unit interval. $\chi_{k+1} = \chi_{k+1}$
 $\psi_{k+1} - \psi_{k} = 1$ $\chi_{k+1} = \chi_{k+1}$
 $\psi_{k+1} = \psi_{k+1}$ $\chi_{k+1} = \chi_{k+1}$
 $\psi_{k+1} = \psi_{k+1}$ $\psi_{k+1} = \psi_{k+1}$ $m = (\psi_2 - \psi_1)/(x_2 - x_1)$ $m = (\psi_2 - \psi_1)/(x_2 - x_1)$

k+1 = k+1/mComputer Graphics by AJ

<u>Algorithm</u>

- 1. Calculate slope m
- 2. If m<1
 - X changes in unit interval
 - Y moves with deviation
 - New points (xk+1, yk+1) = (^xk +1, yk +m)
- 3. If m>1
 - x moves with deviation
 - y changes in unit interval
 - New points (xk+1, yk+1) = (^xk +1/m, yk +1)
- 4. If m=1
 - x and y moves in unit interval.
 - New points (xk+1, yk+1) = (^xk +1, yk +1)
- 5. Continue until we reach end points

Q. The end points of a line is given : (0, 0) & (4, 5). Find all the intermediate points.

Q. The end points of a line is given : (0, 0) & (4, 5). Find all the intermediate points.

m = (yk+1 - yk)/(xk+1 - xk)m = (5-0)/(4-0) = 5/4 >1

Hence m>1.

Then,

yk+1 = yk +1 yk+1 - yk =1 ^xk+1 = ^xk + 1/m 1/m = 4/5 = 0.8

Q. The end points of a line is given : (0, 0) & (4, 5). Find all the intermediate points.

X	У	x plotted on graph	y plotted on graph	(x, y)

Q. The end points of a line is given : (0, 0) & (4, 5). Find all the intermediate points.

×	У	x plotted on graph	y plotted on graph	(x, y)
0	0	0	0	(0, 0)
0.8	1	1	1	(1, 1)
1.6	2	2	2	(2, 2)
2.4	3	2	3	(2, 3)
3.2	4	3	4	(3, 4)
4	5	4	5	(4, 5)

Q2. The end points of a line is given : (2, 3) & (12, 8). Find all the intermediate points.